我们提出了一种联邦平均Langevin算法(FA-LD),用于不确定量化和与分布式客户端的平均预测。特别是,我们概括了正常的后验分布,并考虑一般的模型。我们为FA-LD为具有非I.I.D数据的强烈凹入分布的理论保障,并研究了注入的噪声和随机梯度噪声如何,数据的异质性以及不同的学习率影响收敛性。这样的分析揭示了最佳选择的本地更新,以最大限度地减少通信成本。对于我们的方法很重要,即通信效率不会与Langevin算法中的注入噪声恶化。此外,我们在我们的FA-LD算法中审视了不同客户端使用的独立和相关噪声。我们遵守联邦和沟通成本之间的权衡也在那里。由于本地设备在联合网络中可能处于非活动状态,我们还基于仅可用的部分设备更新的不同平均方案来显示收敛结果。
translated by 谷歌翻译
在本文中,我们解决了逆转图像滤波器效果的新问题,该图像过滤器可以是线性的或非线性的。假设是滤波器的算法未知,滤波器可作为黑框。我们为最小化本地补丁的成本函数和使用总衍生物来近似于梯度下降以解决问题的渐变来制定该逆问题。我们分析影响傅里叶域中输出的收敛和质量的因素。我们还研究加速梯度下降算法在三个无梯度的反向滤波器中的应用,包括本文提出的较方案。我们提出了广泛的实验结果,以评估所提出的算法的复杂性和有效性。结果表明,所提出的算法优于现有技术(1),它与最快的反向滤波器的复杂程度相同,但它可以反转更多数量的滤波器,并且(2)它可以反转与非常复杂的反滤波器的过滤器相同的滤波器列表,但其复杂性要小得多。
translated by 谷歌翻译
深度信息在许多图像处理应用程序中是有用的。然而,由于拍摄图像是在2D成像传感器上投射3D场景的过程,因此深度信息嵌入图像中。从图像中提取深度信息是一个具有挑战性的任务。引导原理是由于散焦引起的蓝色水平与物体和焦平面之间的距离有关。基于该原理和广泛使用的假设,即高斯模糊是散焦模糊的良好模型,我们制定了作为高斯模糊分类问题的空间变化散焦模糊的问题。我们通过培训深度神经网络来解决图像补丁中的20级蓝色蓝色之一来解决问题。我们创建了一个超过500000美元的尺寸为32 \ times32 $的数据集,用于培训和测试几种知名网络模型。我们发现MobileNetv2由于其较低的内存要求和高精度而适用于此应用。训练模型用于确定通过施加迭代加权引导滤波器来改进的贴剂模糊。结果是散焦图,其携带每个像素的模糊度的信息。我们将提出的方法与最先进的技术进行比较,我们展示了其在自适应图像增强,散焦倍率和多聚焦图像融合中的成功应用。
translated by 谷歌翻译
Different people speak with diverse personalized speaking styles. Although existing one-shot talking head methods have made significant progress in lip sync, natural facial expressions, and stable head motions, they still cannot generate diverse speaking styles in the final talking head videos. To tackle this problem, we propose a one-shot style-controllable talking face generation framework. In a nutshell, we aim to attain a speaking style from an arbitrary reference speaking video and then drive the one-shot portrait to speak with the reference speaking style and another piece of audio. Specifically, we first develop a style encoder to extract dynamic facial motion patterns of a style reference video and then encode them into a style code. Afterward, we introduce a style-controllable decoder to synthesize stylized facial animations from the speech content and style code. In order to integrate the reference speaking style into generated videos, we design a style-aware adaptive transformer, which enables the encoded style code to adjust the weights of the feed-forward layers accordingly. Thanks to the style-aware adaptation mechanism, the reference speaking style can be better embedded into synthesized videos during decoding. Extensive experiments demonstrate that our method is capable of generating talking head videos with diverse speaking styles from only one portrait image and an audio clip while achieving authentic visual effects. Project Page: https://github.com/FuxiVirtualHuman/styletalk.
translated by 谷歌翻译
Rankings are widely collected in various real-life scenarios, leading to the leakage of personal information such as users' preferences on videos or news. To protect rankings, existing works mainly develop privacy protection on a single ranking within a set of ranking or pairwise comparisons of a ranking under the $\epsilon$-differential privacy. This paper proposes a novel notion called $\epsilon$-ranking differential privacy for protecting ranks. We establish the connection between the Mallows model (Mallows, 1957) and the proposed $\epsilon$-ranking differential privacy. This allows us to develop a multistage ranking algorithm to generate synthetic rankings while satisfying the developed $\epsilon$-ranking differential privacy. Theoretical results regarding the utility of synthetic rankings in the downstream tasks, including the inference attack and the personalized ranking tasks, are established. For the inference attack, we quantify how $\epsilon$ affects the estimation of the true ranking based on synthetic rankings. For the personalized ranking task, we consider varying privacy preferences among users and quantify how their privacy preferences affect the consistency in estimating the optimal ranking function. Extensive numerical experiments are carried out to verify the theoretical results and demonstrate the effectiveness of the proposed synthetic ranking algorithm.
translated by 谷歌翻译
Masked image modeling (MIM) has shown great promise for self-supervised learning (SSL) yet been criticized for learning inefficiency. We believe the insufficient utilization of training signals should be responsible. To alleviate this issue, we introduce a conceptually simple yet learning-efficient MIM training scheme, termed Disjoint Masking with Joint Distillation (DMJD). For disjoint masking (DM), we sequentially sample multiple masked views per image in a mini-batch with the disjoint regulation to raise the usage of tokens for reconstruction in each image while keeping the masking rate of each view. For joint distillation (JD), we adopt a dual branch architecture to respectively predict invisible (masked) and visible (unmasked) tokens with superior learning targets. Rooting in orthogonal perspectives for training efficiency improvement, DM and JD cooperatively accelerate the training convergence yet not sacrificing the model generalization ability. Concretely, DM can train ViT with half of the effective training epochs (3.7 times less time-consuming) to report competitive performance. With JD, our DMJD clearly improves the linear probing classification accuracy over ConvMAE by 5.8%. On fine-grained downstream tasks like semantic segmentation, object detection, etc., our DMJD also presents superior generalization compared with state-of-the-art SSL methods. The code and model will be made public at https://github.com/mx-mark/DMJD.
translated by 谷歌翻译
Recently, great progress has been made in single-image super-resolution (SISR) based on deep learning technology. However, the existing methods usually require a large computational cost. Meanwhile, the activation function will cause some features of the intermediate layer to be lost. Therefore, it is a challenge to make the model lightweight while reducing the impact of intermediate feature loss on the reconstruction quality. In this paper, we propose a Feature Interaction Weighted Hybrid Network (FIWHN) to alleviate the above problem. Specifically, FIWHN consists of a series of novel Wide-residual Distillation Interaction Blocks (WDIB) as the backbone, where every third WDIBs form a Feature shuffle Weighted Group (FSWG) by mutual information mixing and fusion. In addition, to mitigate the adverse effects of intermediate feature loss on the reconstruction results, we introduced a well-designed Wide Convolutional Residual Weighting (WCRW) and Wide Identical Residual Weighting (WIRW) units in WDIB, and effectively cross-fused features of different finenesses through a Wide-residual Distillation Connection (WRDC) framework and a Self-Calibrating Fusion (SCF) unit. Finally, to complement the global features lacking in the CNN model, we introduced the Transformer into our model and explored a new way of combining the CNN and Transformer. Extensive quantitative and qualitative experiments on low-level and high-level tasks show that our proposed FIWHN can achieve a good balance between performance and efficiency, and is more conducive to downstream tasks to solve problems in low-pixel scenarios.
translated by 谷歌翻译
Deep learning has been widely used for protein engineering. However, it is limited by the lack of sufficient experimental data to train an accurate model for predicting the functional fitness of high-order mutants. Here, we develop SESNet, a supervised deep-learning model to predict the fitness for protein mutants by leveraging both sequence and structure information, and exploiting attention mechanism. Our model integrates local evolutionary context from homologous sequences, the global evolutionary context encoding rich semantic from the universal protein sequence space and the structure information accounting for the microenvironment around each residue in a protein. We show that SESNet outperforms state-of-the-art models for predicting the sequence-function relationship on 26 deep mutational scanning datasets. More importantly, we propose a data augmentation strategy by leveraging the data from unsupervised models to pre-train our model. After that, our model can achieve strikingly high accuracy in prediction of the fitness of protein mutants, especially for the higher order variants (> 4 mutation sites), when finetuned by using only a small number of experimental mutation data (<50). The strategy proposed is of great practical value as the required experimental effort, i.e., producing a few tens of experimental mutation data on a given protein, is generally affordable by an ordinary biochemical group and can be applied on almost any protein.
translated by 谷歌翻译
Rigorous guarantees about the performance of predictive algorithms are necessary in order to ensure their responsible use. Previous work has largely focused on bounding the expected loss of a predictor, but this is not sufficient in many risk-sensitive applications where the distribution of errors is important. In this work, we propose a flexible framework to produce a family of bounds on quantiles of the loss distribution incurred by a predictor. Our method takes advantage of the order statistics of the observed loss values rather than relying on the sample mean alone. We show that a quantile is an informative way of quantifying predictive performance, and that our framework applies to a variety of quantile-based metrics, each targeting important subsets of the data distribution. We analyze the theoretical properties of our proposed method and demonstrate its ability to rigorously control loss quantiles on several real-world datasets.
translated by 谷歌翻译
Recently, large-scale pre-trained models have shown their advantages in many tasks. However, due to the huge computational complexity and storage requirements, it is challenging to apply the large-scale model to real scenes. A common solution is knowledge distillation which regards the large-scale model as a teacher model and helps to train a small student model to obtain a competitive performance. Cross-task Knowledge distillation expands the application scenarios of the large-scale pre-trained model. Existing knowledge distillation works focus on directly mimicking the final prediction or the intermediate layers of the teacher model, which represent the global-level characteristics and are task-specific. To alleviate the constraint of different label spaces, capturing invariant intrinsic local object characteristics (such as the shape characteristics of the leg and tail of the cattle and horse) plays a key role. Considering the complexity and variability of real scene tasks, we propose a Prototype-guided Cross-task Knowledge Distillation (ProC-KD) approach to transfer the intrinsic local-level object knowledge of a large-scale teacher network to various task scenarios. First, to better transfer the generalized knowledge in the teacher model in cross-task scenarios, we propose a prototype learning module to learn from the essential feature representation of objects in the teacher model. Secondly, for diverse downstream tasks, we propose a task-adaptive feature augmentation module to enhance the features of the student model with the learned generalization prototype features and guide the training of the student model to improve its generalization ability. The experimental results on various visual tasks demonstrate the effectiveness of our approach for large-scale model cross-task knowledge distillation scenes.
translated by 谷歌翻译